
ANALYSIS OF AN OPTIMAL SECTOR DESIGN METHOD 
Michael Drew, University of California Santa Cruz, Moffett Field, CA 94035-1000, USA 

 
 

Abstract 
An existing Mixed Integer Programming 

optimal sector design method is implemented, 
analyzed, and improved. The original model is a 
powerful and convenient method of designing 
sectors, but frequently produces geometrically 
undesirable sector shapes. Also, solutions are 
sensitive to external parameters not related to the 
flight data that the solutions are based upon. Near-
optimal solutions vary drastically with small 
changes in objective function value. The model is 
then altered to reduce this sensitivity and produce 
sector designs with a more favorable geometry. 
Additionally, a boundary smoothing method is 
applied that eliminates jagged boundary edges and 
produces a more realistic and feasible sector 
geometry. 

I. Introduction 
The current U.S. National Airspace System 

(NAS) is congested, and estimates suggest that 
traffic volume will increase by 2 to 3 times in the 
coming decades [1].  One of the options being 
considered to address this problem and increase 
throughput while decreasing delay is to redesign the 
current airspace, which currently consists of 20 Air 
Route Traffic Control Centers (ARTCC) across the 
continental U.S. that are each subdivided into 
sectors. Today's sectors have evolved over the years 
in an ad hoc fashion according to current flight 
patterns and volume. Minor changes are 
occasionally made to accommodate variations in the 
airspace demand. While the current sector designs 
are adequate for today's traffic, the existing airborne 
congestion and predicted future demand is 
motivation for improving sector capacity using 
scientific methods. Thus, methods of analytically 
redesigning sectors according to certain geometric 
and flight pattern constraints are sought in order to 
improve the efficiency of the entire NAS. 

Many of the current sector design methods are 
either heuristic-based or optimization-based (e.g., 
Linear Programming (LP) or Mixed Linear 

Programming (MIP) methods). One advantage of 
heuristic methods is their ability to apply several 
complex design criteria based on sector geometry as 
well as air traffic flow patterns. In [2] and [3] the 
authors apply computational geometry techniques 
to recursively partition a 2D airspace region. They 
investigate different types of partition cutting 
methods to maintain equitable workload balance 
within the region. One attractive feature of this 
method is that workload metrics are not required to 
be additive as they are in current LP and MIP 
models. They are also able to partition the space 
with controls on the resulting sector convexity and 
aspect ratio. In [4] Xue uses Genetic Algorithms 
(GA) to select the location of Voronoi partitions 
within the region. Here, GA is used to judge the 
resulting partitions on workload estimates and 
dominant flow directions to increase the region's 
total sector capacity. The use of GA simplifies the 
algorithm design while maintaining the ability to 
use any number of complex sector evaluation 
criteria. In [5] a method of optimal ARTCC design 
is presented while in [6] a MIP model for sector 
design is described. This model is capable of 
forming sectors that are aligned with major traffic 
flows while keeping the workload within the center 
balanced among the sectors. It is a compelling 
method of sector design both for its ease of 
implementation and promise of an “optimal” 
solution. Yet, in practice, there are some behavioral 
inconsistencies in the model that are not well 
understood, and sometimes it produces poor sector 
designs that would not be feasible without 
additional processing. A deeper understanding of 
the MIP model is required before it can be put into 
practice. 

This paper focuses on the implementation, 
analysis, and improvement of the MIP sector design 
method introduced in [6]. Section II provides the 
details of the MIP model and Section III describes 
the implementation of the model within a 
simulation framework. Section IV presents some of 
the resulting sector designs along with an analysis 
of the benefits and shortcomings of the model. This 
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is the primary thrust of the paper, since it focuses 
on the major problems with the MIP model 
performance. Section V presents the improvements 
made to the original model that address these 
issues. Finally, Section VI concludes with an 
overall assessment of this sector design method and 
its potential for future use.  

II. The Optimization Model 
The basis of the MIP model presented here is 

the discretization of the airspace into hexagonal 
cells. As simulated or historic flight data traverse 
the airspace, both a workload metric wi and 
connectivity metric cij are recorded for each cell i. 
The workload metric can be the number of aircraft 
track counts, or a more complex metric like 
Dynamic Density (DD). However it is not clear 
how a workload metric like DD should be 
discretized in sub-sector increments since the MIP 
model structure currently restricts the workload 
value to be an additive quantity. The connectivity 
metric cij is the total number of planes that travel 
from cell i into a neighboring cell j. 

 

Figure 1. Cell workload flow paths 

Referring to Figure 1, the model works on the 
abstract quantity of workload flow (red arrows) 
given by the decision variables fij in the model. 
Flow enters each cell from at least one of its 
neighbors then exits into exactly one neighboring 
cell. The workload of that cell is added to the flow, 
and certain cells called seeds (yellow cells) have the 
option of becoming sinks (green cells) that absorb 
the flow. The number of sinks is constrained to be 
equal to the number of desired sectors, which is 

known a priori. In this way a sector becomes the 
contiguous cluster of cells that feed into one sink, 
and the total workload of the sector is the amount of 
flow absorbed by that sink. This is topologically a 
network model, and although workload flow is an 
abstract quantity, solving for flow paths between 
cells allows the creation of sectors that are aligned 
according to dominant aircraft trajectories while 
maintaining an equitable distribution of workload 
among all the sectors. A major advantage of this 
method is the implicit contiguity of all the cells 
within a sector. Depending on the objective 
function and constraints, the workload distribution 
among the sectors can be controlled, and so can the 
dominant orientation of the resulting cell cluster. 

Model Specifics 
Yousefi's MIP optimization sector design 

method as adapted from [6] may be formally 
defined as follows:  

 
subject to the following constraints: 

 

 
Here fij , Di, ys, and uij are decision variables with fij, 
Di ∈ ℜ+, and ys, uij ∈ {0, 1}. fij  represents the 
workload flow from cell i  into cell j . Di is the 
workload demand of cell i . ys  is an assignment 
variable that determines when seed s is selected to 
be a sink. uij  is the assignment variable controlling 
the direction of flow exiting cell i . 



For n hexagonal cells, I = {1, … , n} is the set 
of all cell indices, and J = {1, … , 6} represents a 
cell's six adjacent neighbors starting with the 
southwestern neighbor proceeding counter-
clockwise around the cell. S ⊆ I is the set of all 
seed cell indices. Seed locations are determined 
ahead of time and are interspersed throughout the 
grid as evenly as possible. 

Thus, a sector consists of all the cells whose 
flows converge to one sink, and by minimizing 
equation 1, the clusters will tend to be oriented 
along the dominant traffic flows.  Constraint 2 
maintains the conservation of workload flow from 
one cell to the next. In words, flow-out minus flow-
in equals the workload addition of the cell minus 
the cell demand (which is zero for all non-seed cells 
according to constraint 3). This constraint sets up a 
network model between the cells, which forces cell 
contiguity within the resulting sector design. Here 
Nij is an n × 6 look-up table that returns the cell 
index of cell i 's j-th neighbor. Pj = [4, 5, 6, 1, 2, 3] 
is another look-up table that returns the neighbor 
index of cell i relative to its neighboring cell j. The 
use of these look-up tables reduces the size of the fij 
matrix from what would otherwise be a sparsely 
populated n × n sized matrix to a more compact n × 
6 matrix. 

In constraint 4, ys = 1 if seed cell s becomes a 
sink, and the sector demand Ds is bounded by the 
upper and lower bounds Uµ and Lµ. If ys = 0, seed 
cell s is not a sink and Ds = 0, causing cell s to 
behave like any other source cell. This constraint is 
what distributes the resulting sector workload in an 
equitable fashion. By tuning L and U with L = (0, 
1.0], and U = [1.0, ∞) the resulting workload 
variation among the sectors in the center can be 
controlled. 

There must be exactly one flow path out of 
each non-sink cell; otherwise, the flow would be 
divided between more than one sink (sector) 
leading to erroneous sector workload values and 
improper workload distribution. This is enforced by 
the uij decision variables and the last 3 constraints. 
Constraints 6 and 7 force ∑

j
 uij to be 1 for all non-

sink cells and 0 for those cells selected to be sinks. 
In conjunction with constraint 8, setting M > Uµ, 
forces all non-sink cells to have exactly one out-

bound flow path and all sink cells to have no out-
bound paths. 

This MIP model is attractive for many reasons. 
For one, it is linear and can be solved in a 
reasonable amount of time depending on the 
number of cells, seeds, sinks (sectors), and tightness 
of bounds (U and L). Even flow constraints 6 - 8, 
which dramatically increase computation time, do 
not make the model prohibitively unwieldy to solve. 
Furthermore, as previously mentioned, because it is 
a simple network flow model, contiguity of cells 
within a sector is an implicit constraint. This is not 
trivial to enforce in other cell-based clustering 
optimization models. 

There are some drawbacks to this model, 
perhaps the greatest of which is the fact that it has 
no inherent notion of a sector. That is, there is no 
cell-sector assignment variable that could be used to 
enforce additional geometric constraints. It is 
possible to add this variable with additional 
constraints, but this will drastically increase 
solution times. Geometric constraints like convexity 
and aspect ratio could be a useful addition to the 
model since, as the results in the next section 
demonstrate, it frequently produces geometrically 
undesirable sector shapes. Also, the shapes tend to 
be sensitive to model parameters and can vary 
dramatically from one near-optimal solution to the 
next. Fortunately, there are some simple methods to 
address these issues that will be presented herein. 

III. Model Implementation 
The Future ATM Concepts Evaluation Tool 

(FACET) is a software package developed, 
maintained, and used by NASA Ames Research 
Center. [7] It is capable of analyzing both historic 
and current air traffic and weather data across the 
entire NAS. It is commonly used as a research tool 
to evaluate “what if” scenarios of various strategic 
and tactical air traffic and air space design concepts. 

A hex grid application was added to FACET, 
which records aircraft counts (wi) and connectivity 
data (cij) for each cell. Any historical data can be 
run through the grid in either “playback” or 
“simulation” mode. Playback mode uses actual 
recorded radar locations of the aircraft, whereas 
simulation mode uses either the filed flight plan or 
great circle paths for aircraft locations. Flight plan 



simulations were used for the results presented 
herein. 

Implementation data from certain times of day 
or from different weather conditions can be used as 
a basis for sector designs optimized (as defined by 
the model) for those conditions.  Hex grids can be 
created of any size and at any altitude range, and 
can be placed over the entire NAS or over 
individual centers. Care must be taken, however, to 
consider the size of the cell verses the sampling rate 
of the data files. Most historic flight data are 
recorded at 60 second sampling intervals. Thus, hex 
cells smaller than about 8 nautical miles in height 
can be missed entirely during a simulation. This is 
addressed by interpolating flight data between 
samples, thereby up-sampling the data prior to use 
in FACET. Of course, flights passing through a cell 
corner may still be missed by that cell, but this is 
not a problem because there will be sample points 
in neighboring cells that are adjacent to each other, 
so the connectivity data from the flight will remain 
contiguous. In aggregate, these effects tend to 
become negligible.  

 

Figure 2. Hex grid aircraft counts from FACET 

After running a simulation in FACET, the 
results are processed by Matlab to convert the data 
into a form usable by the optimization solver. The 
grid cell output is shown in Figure 2 as plotted by 
Matlab. Here, 2205 hex cells 8 nmi high are used to 
record 24 hours of flight data from April 21, 2005 
over ZFW center at flight level 240 – 350. This 
figure shows the aircraft counts of each cell along 
with 82 seed cells shown in black. Next, Ilog’s OPL 
Studio or AMPL CPLEX solves the optimization 
problem described in the previous section. Because 
the solution to the optimization problem consists of 
only work flow values and sink demands (fij, Ds), it 

must be post-processed to convert it into separate 
clusters of cells representing sectors. This 
procedure is diagrammed in Figure 3. Once the 
sector boundaries are determined, they can be 
imported back into FACET (or other Air Traffic 
Management (ATM) simulation tools) for 
experimental validation and analysis. 

 

 

Figure 3. Sector design procedure 

IV. Model Results and Analysis 
One of the nice features of the MIP model is 

the ability to capture the dominant flow directions 
in the shape of the sector while keeping the 
workload balanced. Figure 4 shows the sector 
design produced by the MIP model based on the 
data shown in Figure 2. Note that the dominant 
direction of most of the sectors is aligned with the 
dominant trajectories depicted in Figure 2. Sectors 
that are aligned with their dominant flows are 
desirable, because the average aircraft dwell time 
will be higher and likewise the capacity of the 
sector. 

As is obvious from Figure 4, many of the 
sector shapes are extremely non-convex and have 
rough geometric features (beyond those produced 
by the jagged hex cell edges alone) not desirable for 
sector boundaries. When implementing this model, 
experimentation revealed additional issues that will 
now be discussed in detail. 



 

Figure 4. Optimal sector design results 

Seed Sensitivity 
The number and location of the seed cells can 

dramatically affect sector design results. Recall that 
seeds are cells chosen to be candidate sinks that 
absorb the abstract quantity known as flow. Thus, 
for each center there must be at least as many seeds 
as there are sectors. Sinks have no inherent meaning 
in the real world and are only used as a device in 
the network model for collecting and measuring the 
total workload present in a sector.  It seems 
reasonable that as long as a lot of seeds are evenly 
dispersed throughout the center, good solutions 
should be found. In practice, using 3 - 5 times the 
number of sinks as there are sectors tends to 
produce desired results that solve in reasonable 
time. Yet, the more options the solver has for 
potential sinks, the lower the best integer bound of 
the MIP problem goes, which results in a more 
optimal solution according to equation 1. 
Unfortunately, allowing all cells to be seeds 
(potential sinks) makes the problem too complex to 
solve consistently in tolerable time. 

Consider the results of Figure 5, which shows 
four sector designs based on identical track data 
using an increasing number of seeds. Some of the 
sector boundaries remain relatively stable 
(particularly the western side of the center between 
the 97 and 211 seeds examples), but many sectors 
change dramatically as the number of seeds is 
increased. Note, also, that the sector designs with 
the largest number of seeds are not necessarily any 
more geometrically desirable (in terms of 
convexity, aspect ratio, etc.) than those with fewer 

seeds—despite producing objective function 
solutions with lower values. This really comes as no 
surprise, since there are no geometric functions or 
constraints within this MIP model. 

 

Figure 5. Sector designs with increasing number 
of seeds 

Solution Space Sensitivity 

Another concern is the variation of the 
resulting sector designs within the feasible solution 
space itself. As a MIP model is solved, the 
objective function value at the current best integer 
feasible solution is compared with that of the best 
known lower node bound. This difference is known 
in CPLEX as the mip gap, and often the solver is 
permitted to terminate once this value drops below 
a pre-determined limit to prevent excessively long 
run times. For this model solutions with a mip gap 
of less than 2% were considered satisfactory. 
Experience has shown that widely varying sector 
geometries can result from minor differences in the 
objective function value—even as the mip gap 
approaches zero. This solution instability among 
near-optimal solutions may be more or less drastic 
depending on the track data, but it is always present 
to some extent. 

Figure 6 shows the relative normalized 
objective function values of several solutions along 
with a shape change metric. This is a simple method 
of quantifying the geometric difference between 
one sector design and another, and it is based on the 
relative change in cell-sector assignments. To 
compare two sector design solutions A and B, the 
shape change metric SC is defined as follows: 



 
Here K is the number of sectors, and nk is the 
number of cells assigned to sector k in solution A. 
αk is the number of cells assigned to sector k in 
solution A that are assigned to sector j in solution B 
where j is the dominant cell assignment of cells 
from solution A sector k in solution B. 

 

Figure 6. Difference in near-optimal solutions 

  Figure 6 demonstrates that as the objective 
function is minimized, there are still major 
geometric differences between subsequent 
solutions—even as the solution becomes close to 
optimal. Notice that at solution 12, there is a spike 
in the shape change metric even though the 
objective function values of solutions 12 and 13 are 
within 0.04% of each other. The sector boundaries 
for these solutions are shown above the plot. Note 
that several of the sectors in the east and northwest 
regions of the center show drastic differences. The 
fact that the changes in sector geometry are not 
strongly correlated to changes in the objective 
function value is especially obvious here. 

Considering the objective function of equation 
1 this effect is not surprising. It is apparent that 
small changes in the routing of flow fij can produce 
drastic differences in the resulting sector geometry. 
Conversely, there is no unique mapping from a 
particular sector design geometry to a feasible set of 
decision variable solutions in the MIP model. While 
most of the feasible solutions near the final optimal 

solution appear relatively stable, major geometric 
changes can and do occur between solutions. In the 
next section, methods of improving these results 
will be discussed. 

V. MIP Model Improvements 
It is clear that this sector design method has 

some issues in its original form. However, the 
promise of an elegant model that provides a reliable 
and tractable method of producing an optimal 
design is motivation for investigating ways of 
improving this model. Here, methods of improving 
the stability of the solutions and the geometry of the 
final designs are presented. 

Symmetric Connectivity 
The rough and extremely non-convex sectors 

of Figure 4 can partially be explained by 
considering that the optimization model will seek 
solutions that direct the abstract flow quantity along 
paths that minimize equation 1. Recalling that since 
cij is the record of planes that flew from cell i  to the 
neighboring cell j , if more planes flew from cell i  
to cell j  than from cell j  to i , the flow will be 
biased to go the same direction. Considering this 
bias, it is apparent that convoluted flow paths may 
arise leading to rough sector edges containing 
unwieldy spurs as shown in Figure 4. Since what is 
desired, however, is that cell i connect to cell j, it is 
ultimately irrelevant whether the flow goes from i 
to j or from j to i. Therefore, prior to running the 
optimization model, cij is redefined to be equal to 
the number of planes that flew from cell i to cell j 
plus the number of planes that flew from cell j to 
cell i. In this way, the cij data across a cell edge will 
be equal on both sides, and flow will be likely to go 
in either direction giving the optimization software 
more options to find a feasible solution with a lower 
objective function value. 

This method is referred to as the “symmetric 
connectivity method” and is depicted in Figures 7 
and 8. In Figure 7 a simple example of a grid 
segment is shown using the standard data structure 
and resulting sector shape. Figure 8 demonstrates 
the effects of applying the symmetric connectivity 
method which produces smoother sector shapes that 
better correspond to the dominant flows. 

 



 

Figure 7. Example grid sector using standard 
connectivity 

 

Figure 8. Identical grid using symmetric 
connectivity 

The results of running the same data set 
through the optimization model using this method is 
shown in Figure 9. While there are still some 
undesirable shapes, this is a significant 
improvement over the original method's results in 
terms of sector boundary geometry. Furthermore, 
this minor change reduces the model's seed 
sensitivity and stabilizes the solution space results 
as shown in Figure 10. Compared to Figure 6, the 
symmetric connectivity method exhibits a stronger 
correlation between shape stability and objective 
function. Near-optimal solutions tend to be more 
similar to each other making the model less 
sensitive to the mip gap stopping criteria. 

 

Figure 9. Sector design using symm. conn. 
method 

 

Figure 10. Difference in near-optimal solutions 

Convexity Constraints 
One of the most unfavorable behaviors of this 

MIP model is its tendency to produce sector designs 
with long spurs or thin regions. “Boomerang-
shaped” or even “Y-shaped” sectors have been 
known to arise. These tendencies are reduced by the 
symmetric connectivity method, but not entirely. If 
a measure and control of convexity could be 
enforced the sector shapes could be improved 
(although non-convexity should probably not be 
prohibited entirely). 

This particular implementation cannot provide 
a means of controlling the resulting sector 
geometry, because it does not contain the notion of 
a sector or of cell-sector assignments. However, 
methods of extending the model to include a cell-
sector assignment variable are available. Yousefi's 
3-D sector design method in [6] includes this 
extension. Also, the author has developed a model 
that includes some geometric convexity control, but 
it remains to be seen if it can be applied to 



representative problems. The additional complexity 
of the extended model exponentially increases 
solution time but efforts are underway to improve 
its efficiency. 

A more practical approach may be to sift 
through a pool of solutions produced by the solver 
and select those that meet desired criteria. Using 
Ampl CPLEX's solution pool feature, 
improvements in sector shape have been realized by 
selecting from many solutions those that have 
sector boundaries that are the most convex—thus 
eliminating some of the extreme spurs and branches 
of some sectors. Convexity is measured by counting 
the number of perimeter cells in each sector. 
Designs that have the least number of perimeter 
cells are considered the most convex. So far, 
improvements have only been minor and may not 
be worth the additional effort, since the near-
optimal solutions using the symmetric connectivity 
method are similar to each other and already more 
convex than before. 

Boundary Smoothing 
One of the basic inconveniences of this sector 

design method is that hex cells will always produce 
jagged edges that are undesirable for real sector 
boundaries.  It is therefore reasonable to consider 
ways of smoothing these boundaries to make them 
simpler and more manageable. Doing so may also 
improve some of the geometric inadequacies of the 
MIP model mentioned above. 

 

Figure 11. Four iterations of the Douglas-
Peucker algorithm 

The sector boundaries may be simplified using 
a common smoothing algorithm from the field of 

computational geometry known as the Douglas-
Peucker (DP) algorithm. [8] This is a recursive 
algorithm that starts with the first and last vertices 
of the polyline. Then, the perpendicular distance 
between each intermediate vertex of the original 
line and the current simplified polyline segment is 
measured. The vertex with the largest perpendicular 
distance is added to the simplified polyline if the 
distance is greater than some distance tolerance ε. 
This process repeats as shown in Figure 11 until 
none of the vertices of the original polyline are 
greater than ε distance to the segments of the 
simplified line. The speed of this algorithm is 
output-dependent running in O(nm) worst case time 
where m is the number of vertices in the simplified 
polyline. 

Applying this method to the sector design 
process requires first identifying the shared 
boundaries of the sectors so they can be smoothed 
as individual edges. Vertices consisting of the 
intersection of multiple sector edges are preserved 
and are not moved during the smoothing process. 
Once smoothed, the edges are stitched back 
together to create sector polygons which can be 
imported into ATM software packages like FACET 
for further analysis and validation. Figure 12 shows 
the smoothed version of the sector designs from 
Figure 9. Values for ε are usually relative to the cell 
height h. Here a value of ε = 3h produces good 
results. 

 

Figure 12. Final smoothed sector design 

The results of Figure 12 are promising since 
many of the resulting sector shapes are fairly 
reasonable in size and geometry. There are still 
some obvious problem areas, however, but when 
applied NAS-wide, the sectors produced by using 



the symmetric connectivity method in conjunction 
with this post-optimization smoothing algorithm 
have shown considerable capacity and performance 
gains in preliminary ACES (Airspace Concepts 
Evaluation System [9]) software simulations. 

Of course, depending on how ε is tuned, some 
of the optimality provided by the MIP model may 
be lost. This is usually not a concern with smaller 
values of ε. However, if necessary, the loss of 
optimality in terms of workload balance may be 
measured. Workload loss (or gain) can be estimated 
by the fraction of the area of each lost (or gained) 
cell multiplied by that cell's workload value. The 
red and green shaded areas of Figure 11 depict this. 
Although it is not demonstrated here, it is possible 
to apply the DP algorithm in an incremental fashion 
to maintain the workload balance within some 
bound. Such an algorithm may be applied to one 
edge at a time while keeping track of the change in 
workload. This is a greedy heuristic with the 
disadvantage that the last edges to be processed are 
usually less smooth than the first because there is 
less available workload deviation in the neighboring 
sectors. 

VI. Conclusions 
This paper presents an existing mixed integer 

programming model that provides an optimal sector 
design method, but in its implementation may tend 
to produce some geometrically undesirable sector 
boundaries. There are also problems that arise from 
its sensitivity to model parameters and to minor 
solution space variations within the neighborhood 
of the optimal objective function value. These 
issues have been investigated, and the sensitivity 
and sector geometry problems have been 
substantially reduced through a modification to the 
model's input data. Additional improvements were 
introduced with a post-optimization smoothing 
algorithm. 

There are some remaining disadvantages to 
this MIP method of sector design including the 
difficulty in applying geometric constraints and in 
using more complex workload metrics. It is not 
clear if any of these can be completely addressed 
within the MIP model framework. However, with 
the improvements made herein, this sector design 
procedure offers a quick method of synthesizing 

sector designs that can be easily applied to varying 
traffic patterns and demand. Supplemental 
heuristics that augment the optimal model results 
may be developed, but these might ultimately defeat 
the advantages the optimal design method provides. 
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